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Why do we need to identify security bugs?



Motivation

e The overwhelming number of bugs reports
O Mozilla: ~ 300 bugs reports per day
O Linux kernel: More than 900K commits have been made
m ~165 git commits per day



Motivation
The overwhelming number of bugs reports
e Patch propagation in derivative programs is hard and

expensive
O Example: Many projects are derived from the Linux kernel
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Motivation

e The overwhelming number of bugs reports

o Security bugs may not be fixed timely, and attackers have
opportunities to exploit these security bugs

e Patch propagation in derivative programs is hard and
expensive

Maintainers are prioritizing to fix security bugs.
Unrecognized security bugs may be left unpatched!



Our goal:

|[dentify patches that are for security bugs



How to identify patches for security bugs?



Traditional approaches:

e Text-mining
o Analyze textual information of patches to find security-related
keywords.

e Statistical analysis
o Differentiate patches of security bugs from general bugs by using
statistical information.

Limitations:
1. Bad precision.
2. Cannot know the security impacts of bugs.



Limitations of traditional approaches:

CVE-2014-8133 Permission bypass

commit 41bdc78544b8a93a9c6814b8bbbfef966272abbe
Author: Andy Lutomirski <luto@amacapital.net>
Date: Thu Dec 4 16:48:16 2014 -0800

x86/tls: Validate TLS entries to protect espfix

Installing a 16-bit RW data segment into the GDT defeats espfix.
AFAICT this will not affect glibc, Wine, or dosemu at all.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: H. Peter Anvin <hpa@zytor.com>

Cc: stable@vger.kernel.org

Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: security@kernel.org <security@kernel.org>




We prefer a program analysis--based method

e Understand the semantics of patches and bugs precisely

e Abug is a security bug if it causes security impacts when
triggered.

e A patch is for a security bug when it blocks the security
Impacts
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How to know if a patch blocks security
impacts?



A security impact = A security-rule violation

Security rules are coding guidelines used to prevent security
bugs.

Security-rule violations cause security impacts.
We thus check if a patch blocks security-rule violations
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Common security rules

Rule 1: In-bound access Rule 3: Use after initialization
Read & write operations A variable should not be used
should be within the until it has been initialized.
boundary of the current
object.

Rule 4: Permission check

Rule 2: No use after free before sensitive operations
An object pointer should not Permissions should be
be used after the object has checked before performing
been freed. sensitive operations, such as

/O operations.
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Violations for common security rules

Rule 1: In-bound access Rule 3: Use after initialization
l violation violation
Out-of-bound access Uninitialized use
Rule 4: Permission check
Rule 2: No use after free before sensitive operations
. violation violation

Use-after-free Permission bypass
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A patch blocks security impacts if:

If we can prove the following conditions:

Condition 1: The unpatched version of code violates a
security rule.

Condition 2: The patched version of code does not violate the
security rule.
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Challenge:

How to precisely determine the security-rule violations?



Intuition:

We can leverage two unique properties of
under-constrained symbolic execution.



Property 1: Constraints model violations

Security-rule violations can be modeled as constraints
Example:

Buffer access: Buffer[Index];

Constraints for out-of-bound access:

Index = UpBound, and/or Index s LowBound
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Property 2: Conservativeness
Under-constrained symbolic execution is conservative.

e [alse-positive solutions
o If the constraints are solvable, this can be a false
positive.

e Proved unsolvability
o If it cannot find a solution against constraints, they are
iIndeed unsolvable.
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Leverage the properties for determining the security-rule
violations

e Patch-related operations can be modeled as symbolic
constraints

e To show the patched version won't violate a security rule
o To prove “violating” is unsolvable

e Jo show the unpatched version will violate the security

rule
o To prove “non-violating” is unsolvable 2



Our approach: Symbolic rule comparison

1. Construct opposite constraint sets for the patched and
unpatched version
a. Patched version: Construct constraints for violating
security rules
b. Unpatched version: Construct constraints for not
violating security rules
2. Check the unsolvability of these constraint sets
3. Confirm the patches for security bugs if both constraint
sets are unsolvable
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Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state
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Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state
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Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state

e The patch changes the code from an unsafe state to a safe

state
o Precisely confirmed with property 2
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Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state

e The patch changes the code from an unsafe state to a safe
state

The patch fixed a security bug with the security impact that
corresponding to the security rule violation.
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A concrete example
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STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if ({(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n",
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;
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STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) { /

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if ({(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n’,
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;

- ldentify security operations.
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STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712

2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3 if (sta_id 2= IWLAGN STATION _COUNT) {
4 IWL_ERR(priv, " id %u", sta_id);
5 return -EINVAL;
6 }
7
8 if ({(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

|dentify security operations.

— Extract critical variable.
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STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) {
4 L_ERR(priv, “invalid sta_id %u", sta_id);
5 returQ -EINVAL;
6 } Slicing
7
8 if (!(priv->stations[sta_id].used })
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

|dentify security operations.

Extract critical variable.

|dentify vulnerable operations.
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STEP 2: Collecting and construct constraints for

patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) { 3
4 IWL_ERR(priv, "invalid sta_id %u", sta_id);
5 return -EINVAL; /
6 }
7
8 if (!(priv->stations[sta_id].used)) J
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

/Collecting constraints

/ Constraints source Constraints

Security operations sta_id <
IWLAGN_STATION_CO
UNT

Slice N/A

Artificial constraints sta_id >= Bound of

(Security rules) priv->stations

Violating security rules
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STEP 3: Solving constraints for patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) { 3
4 IWL_ERR(priv, "invalid sta_id %u", sta_id);
5 return -EINVAL; /
6 }
7
8 if (!(priv->stations[sta_id].used)) J
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

/Collecting constraints

/ Constraints source Constraints

Security operations sta_id <
IWLAGN_STATION_CO
UNT

Slice N/A

Artificial constraints sta_id >= Bound of

(Security rules) priv->stations

These constraints are unsolvable!

32



STEP 3: Solving constraints for patched code

1 // CVE-2012-6712
2 intiwl_sta_ucode_activate(..., u8 sta_id) {

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n’,
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;

The patched version won'’t
violate the security rule.

These constraints are unsolvable!
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STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4

5

6

7

8 if (!(priv->stations[sta_id].used })

9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

|dentify vulnerable operations.
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STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4

5

6

7

8 if (!(priv->stations[sta_id].used ))

9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

__Extract critical variable.

|dentify vulnerable operations.
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STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4
2 Slicing
7
8 if (!(priv->stations[sta_id].used ))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

Extract critical variable.

|dentify vulnerable operations.
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STEP 2': Collecting and construct constraints for

unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) { .
3

O J Oy Ul b

if ({(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "

10 "addr %pM\n’,

11 sta_id, priv->stations|[sta_id].sta.sta.addr);

12

13

14 return O;

15}

Collecting constraints

Constraints source Constraints

Security operations

Slice -
Artificial constraints sta_id < Bound of
(Security rules) priv->stations
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STEP 2': Collecting and construct constraints for
unpatched code

L/ CVE-2012-6712 Collecting constraints
2 int iwl_sta_ucode_activate(..., u8 sta_id) { . Constraints source Constraints
3
4 Security operations sta_id >=
> IWLAGN_STATION_CO
6 UNT
7
8 if ({(priv->stations[sta_id].used)) Slice -
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’, Artificial constraints sta_id < Bound of
11 sta_id, priv->stations[sta_id].sta.sta.addr);| | (Security rules) priv->stations
12
13 : ; ;
1 eturn O: Non-violating security rules
15}
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STEP 3': Solving constraints for unpatched code

L/ CVE-2012-6712 Slicing & Collecting constraints
2 int iwl_sta_ucode_activate(..., u8 sta_id) { . Constraints source Constraints
3
4 Security operations sta_id >=
> IWLAGN_STATION_CO
6 UNT
7
8 if ({(priv->stations[sta_id].used)) Slice -
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n", Artificial constraints sta_id < Bound of
11 sta_id, priv->stations[sta_id].sta.sta.addr);| | (Security rules) priv->stations
12
13 _
14 return O; These constraints are also
15} unsolvable!
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STEP 3': Solving constraints for unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3
g The unpatched version MUST
6 violate the security rule.
7
8 if (!(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13 _
14 return O; These constraints are also
15} unsolvable!
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STEP 4: Symbolic rules comparison

e The constraints for patched version are unsolvable!
o “Violating security rules” is unsolvable
o Patched version does not have an out-of-bound access

e The constraints for unpatched version are unsolvable!
o “NOT violating security rules” is unsolvable
o Unpatched version has out-of-bound accesses

Conclusion: The patch blocks an out-of-bound access.
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Advantages of our approach

e \ery few false positives --- Special use of under-constrained symbolic
execution

o 97% precision rate

e Determine security impacts of bugs

o By detecting security rules violations, it can identify security bugs
and also their security impacts

e Easy to extend

o To cover more kinds of security impacts, users just need to model
more types of security rules
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Implementation

e OQOur prototype: SID
o Based on LLVM

e Currently support five types of common security impacts

O Qut-of-bound access, permission bypass, uninitialized use,
use-after-free, and double-free
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Evaluation

44



Performance

e We analyzed 54K patches

e The experiments were performed on a desktop with 32GB
RAM and 6 core Intel Xeon CPU

e The analysis takes an average of 0.83 seconds for each
patch.
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False-positive and false-negative analysis

e Few false positives
o We confirmed 227 security bugs with 8 false-positive cases.

e False negatives (can be reduced)
o 53% false negatives.
o Most of them are caused by incomplete coverage for security and
vulnerable operations.
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Security evaluation for identified security bugs

e Security impacts
o Already confirmed by SID

e Reachabillity
o Check the call chain from entry points to vulnerable
functions
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Security evaluation for identified security bugs

e Vulnerability confirmation for CVE
o 54 CVEs confirmed out of 227 identified bugs.
o 117 security bugs are still under review.

e Reachability analysis for security bugs
o 28 dynamically confirmed bugs (fuzzers).
o 154 are reachable from attacker controllable entry points, such as
system calls.

e 21 security bugs still unpatched in the Android kernel.
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Conclusions

e Timely patching of security bugs requires the

determination of security impacts
o Patch propagation is hard and expensive

o So maintainers have to prioritize to fix the security bugs.

e We exploit the properties of under-constrained symbolic
execution for the determination
O  Our novel approach: Symbolic rule comparison

e |dentified many overlooked security bugs in the kernel
O They may cause critical security conseguences
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Security impacts, security rules violation, and fixes

Main security impacts
Out-of-bound access (16.5%)
Uninitialized use (13.7%)

Permission bypass (21.9%)

Use-after-free, double-free
(4.3%)

(See Il. BACKGROUND)

Security rules violation
Read/Write out of boundary
Use before initialization

Sensitive operations without
perm check

Use freed pointer

Common fixes
Add bound check (79%)
Add initialization (78%)

Add permission check
(59%)

Add nullification (32%)
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Modeling different types of security bugs

Security operation Patched version Unpatched version

Pointer nullification FLAG,,, =1 FLAG,,, =0

Initialization FLAG,,, =1 FLAG,, =0

Permission check FLAG,,, =1 FLAG,, =0

Bound check CV < UpBound, or CV = UpBound, resp.
CV > LowBound CV < LowBound

Constraints for security operations from patches. Flag,.,, : Flag symbol; CV: critical variable ;
UpBound: checked upper bound; LowBound: checked lower bound.
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Modeling different types of security bugs

Security rules Patched version Unpatched version
No use after free FLAG,, =0 FLAG,, = 1
Use after initialization | FLAG, =0 FLAG,, =1
Permission check FLAG, =0 FLAG,,, =1
before sensitive
operations
In-bound access CV = MAX, or/and CV < MAX, resp.
CV < MIN CV > MIN

Constraints from security rules. Flag,.,, : Flag symbol; CV: critical variable; MAX: maximum bound
of the buffer; MIN: minimum bound of the buffer
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Generality of patch model

e The existence of three key components in vulnerabilities
o 77% vulnerabilities contains all of three key components
o 11% vulnerabilities contains part of key components

o After extending, SID can support the security-impact
determination for them (See VII. DISCUSSION)
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What is the common model of
patches for security bugs?



Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ... ) ;
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Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ... ) ;

l

Violate security rules
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Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ... ) ;

l

Violate security rules == Security impacts
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Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ... ) ;

l

Violate security rules == Security impacts
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Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ... ) ; ,

l

Violate security rules == Security impacts
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Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ... ) ; ,

ViolaMrules — SeMts

NOT Violate security rules
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