Precisely Characterizing Security Impact in a
Flood of Patches via Symbolic Rule
Comparison

Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu

M UNIVERSITY OF MINNESOTA

Driven to Discover®

Why do we need to identify security bugs?

Motivation

e The overwhelming number of bugs reports
O Mozilla: ~ 300 bugs reports per day
O Linux kernel: More than 900K commits have been made
m ~165 git commits per day

Motivation
The overwhelming number of bugs reports
e Patch propagation in derivative programs is hard and

expensive
O Example: Many projects are derived from the Linux kernel

«u?x:u :n c..@—... “ ‘%{g« 77 .‘1 ...' S cﬁgm (CRUX cnissss

0o &S O&mOETE , 0O & X

288 %532m63d4s 8

T—_— ,,\3:03 @ “W.;. m@m G“ Igp xr"*;'}}e Jibbed I:’]é ;‘%s .?{3. &

Kubuntu x:v)‘?::t xE«x ‘%‘ Li’n:Ex u?%és un@us ..A L?;fiv .? L.ﬁl ug?xr

22 0200, 22°20DH8

NL m@. u-g» NefRsD n:?w \E: u.iu ‘7,... ﬁ ﬁ\ .x‘. NoNveII NST

e Troeev ..
[":3" ,?w - O 0?0 o?é, ® rﬁ! A - edgz'-bai\g/elizﬂif'bsgsleér-%gffzggbsnoogtv)/

Motivation

e The overwhelming number of bugs reports

o Security bugs may not be fixed timely, and attackers have
opportunities to exploit these security bugs

e Patch propagation in derivative programs is hard and
expensive

Maintainers are prioritizing to fix security bugs.
Unrecognized security bugs may be left unpatched!

Our goal:

|[dentify patches that are for security bugs

How to identify patches for security bugs?

Traditional approaches:

e Text-mining
o Analyze textual information of patches to find security-related
keywords.

e Statistical analysis
o Differentiate patches of security bugs from general bugs by using
statistical information.

Limitations:
1. Bad precision.
2. Cannot know the security impacts of bugs.

Limitations of traditional approaches:

CVE-2014-8133 Permission bypass

commit 41bdc78544b8a93a9c6814b8bbbfef966272abbe
Author: Andy Lutomirski <luto@amacapital.net>
Date: Thu Dec 4 16:48:16 2014 -0800

x86/tls: Validate TLS entries to protect espfix

Installing a 16-bit RW data segment into the GDT defeats espfix.
AFAICT this will not affect glibc, Wine, or dosemu at all.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: H. Peter Anvin <hpa@zytor.com>

Cc: stable@vger.kernel.org

Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: security@kernel.org <security@kernel.org>

We prefer a program analysis--based method

e Understand the semantics of patches and bugs precisely

e Abug is a security bug if it causes security impacts when
triggered.

e A patch is for a security bug when it blocks the security
Impacts

10

How to know if a patch blocks security
impacts?

A security impact = A security-rule violation

Security rules are coding guidelines used to prevent security
bugs.

Security-rule violations cause security impacts.
We thus check if a patch blocks security-rule violations

12

Common security rules

Rule 1: In-bound access Rule 3: Use after initialization
Read & write operations A variable should not be used
should be within the until it has been initialized.
boundary of the current
object.

Rule 4: Permission check

Rule 2: No use after free before sensitive operations
An object pointer should not Permissions should be
be used after the object has checked before performing
been freed. sensitive operations, such as

/O operations.

13

Violations for common security rules

Rule 1: In-bound access Rule 3: Use after initialization
l violation violation
Out-of-bound access Uninitialized use
Rule 4: Permission check
Rule 2: No use after free before sensitive operations
. violation violation

Use-after-free Permission bypass

14

A patch blocks security impacts if:

If we can prove the following conditions:

Condition 1: The unpatched version of code violates a
security rule.

Condition 2: The patched version of code does not violate the
security rule.

15

Challenge:

How to precisely determine the security-rule violations?

Intuition:

We can leverage two unique properties of
under-constrained symbolic execution.

Property 1: Constraints model violations

Security-rule violations can be modeled as constraints
Example:

Buffer access: Buffer[Index];

Constraints for out-of-bound access:

Index = UpBound, and/or Index s LowBound

18

Property 2: Conservativeness
Under-constrained symbolic execution is conservative.

e [alse-positive solutions
o If the constraints are solvable, this can be a false
positive.

e Proved unsolvability
o If it cannot find a solution against constraints, they are
iIndeed unsolvable.

19

Leverage the properties for determining the security-rule
violations

e Patch-related operations can be modeled as symbolic
constraints

e To show the patched version won't violate a security rule
o To prove “violating” is unsolvable

e Jo show the unpatched version will violate the security

rule
o To prove “non-violating” is unsolvable 2

Our approach: Symbolic rule comparison

1. Construct opposite constraint sets for the patched and
unpatched version
a. Patched version: Construct constraints for violating
security rules
b. Unpatched version: Construct constraints for not
violating security rules
2. Check the unsolvability of these constraint sets
3. Confirm the patches for security bugs if both constraint
sets are unsolvable

21

Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

22

Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state

23

Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state

e The patch changes the code from an unsafe state to a safe

state
o Precisely confirmed with property 2

24

Rationale behind our approach

e For a security rule, the patched version NEVER violate it
o This means that the patched version is in a safe state

e |n the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
o This means that the unpatched version is in an unsafe state

e The patch changes the code from an unsafe state to a safe
state

The patch fixed a security bug with the security impact that
corresponding to the security rule violation.

25

A concrete example

26

STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if ({(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n",
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;

27

STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) { /

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if ({(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n’,
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;

- ldentify security operations.

28

STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712

2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3 if (sta_id 2= IWLAGN STATION _COUNT) {
4 IWL_ERR(priv, " id %u", sta_id);
5 return -EINVAL;
6 }
7
8 if ({(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

|dentify security operations.

— Extract critical variable.

29

STEP 1. Symbolically analyzing patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) {
4 L_ERR(priv, “invalid sta_id %u", sta_id);
5 returQ -EINVAL;
6 } Slicing
7
8 if (!(priv->stations[sta_id].used })
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

|dentify security operations.

Extract critical variable.

|dentify vulnerable operations.

30

STEP 2: Collecting and construct constraints for

patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) { 3
4 IWL_ERR(priv, "invalid sta_id %u", sta_id);
5 return -EINVAL; /
6 }
7
8 if (!(priv->stations[sta_id].used)) J
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

/Collecting constraints

/ Constraints source Constraints

Security operations sta_id <
IWLAGN_STATION_CO
UNT

Slice N/A

Artificial constraints sta_id >= Bound of

(Security rules) priv->stations

Violating security rules

31

STEP 3: Solving constraints for patched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {

3 if (sta_id >= IWLAGN_STATION_COUNT) { 3
4 IWL_ERR(priv, "invalid sta_id %u", sta_id);
5 return -EINVAL; /
6 }
7
8 if (!(priv->stations[sta_id].used)) J
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

/Collecting constraints

/ Constraints source Constraints

Security operations sta_id <
IWLAGN_STATION_CO
UNT

Slice N/A

Artificial constraints sta_id >= Bound of

(Security rules) priv->stations

These constraints are unsolvable!

32

STEP 3: Solving constraints for patched code

1 // CVE-2012-6712
2 intiwl_sta_ucode_activate(..., u8 sta_id) {

3

O J Oy Ul b

11
12
13
14
15}

if (sta_id >= IWLAGN_STATION_COUNT) {
IWL_ERR(priv, "invalid sta_id %u", sta_id);
return -EINVAL;

}

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
"addr %pM\n’,
sta_id, priv->stations|[sta_id].sta.sta.addr);

return O;

The patched version won'’t
violate the security rule.

These constraints are unsolvable!

33

STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4

5

6

7

8 if (!(priv->stations[sta_id].used })

9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

|dentify vulnerable operations.

34

STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4

5

6

7

8 if (!(priv->stations[sta_id].used))

9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

__Extract critical variable.

|dentify vulnerable operations.

35

STEP 1': Symbolically analyzing unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3

4
2 Slicing
7
8 if (!(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13
14 return O;

15}

Extract critical variable.

|dentify vulnerable operations.

36

STEP 2': Collecting and construct constraints for

unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) { .
3

O J Oy Ul b

if ({(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "

10 "addr %pM\n’,

11 sta_id, priv->stations|[sta_id].sta.sta.addr);

12

13

14 return O;

15}

Collecting constraints

Constraints source Constraints

Security operations

Slice -
Artificial constraints sta_id < Bound of
(Security rules) priv->stations

37

STEP 2': Collecting and construct constraints for
unpatched code

L/ CVE-2012-6712 Collecting constraints
2 int iwl_sta_ucode_activate(..., u8 sta_id) { . Constraints source Constraints
3
4 Security operations sta_id >=
> IWLAGN_STATION_CO
6 UNT
7
8 if ({(priv->stations[sta_id].used)) Slice -
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’, Artificial constraints sta_id < Bound of
11 sta_id, priv->stations[sta_id].sta.sta.addr);| | (Security rules) priv->stations
12
13 : ; ;
1 eturn O: Non-violating security rules
15}

38

STEP 3': Solving constraints for unpatched code

L/ CVE-2012-6712 Slicing & Collecting constraints
2 int iwl_sta_ucode_activate(..., u8 sta_id) { . Constraints source Constraints
3
4 Security operations sta_id >=
> IWLAGN_STATION_CO
6 UNT
7
8 if ({(priv->stations[sta_id].used)) Slice -
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n", Artificial constraints sta_id < Bound of
11 sta_id, priv->stations[sta_id].sta.sta.addr);| | (Security rules) priv->stations
12
13 _
14 return O; These constraints are also
15} unsolvable!

39

STEP 3': Solving constraints for unpatched code

1 // CVE-2012-6712
2 int iwl_sta_ucode_activate(..., u8 sta_id) {
3
g The unpatched version MUST
6 violate the security rule.
7
8 if (!(priv->stations[sta_id].used))
9 IWL_ERR(priv,"Error active station id %u "
10 "addr %pM\n’,
11 sta_id, priv->stations|[sta_id].sta.sta.addr);
12
13 _
14 return O; These constraints are also
15} unsolvable!

40

STEP 4: Symbolic rules comparison

e The constraints for patched version are unsolvable!
o “Violating security rules” is unsolvable
o Patched version does not have an out-of-bound access

e The constraints for unpatched version are unsolvable!
o “NOT violating security rules” is unsolvable
o Unpatched version has out-of-bound accesses

Conclusion: The patch blocks an out-of-bound access.

41

Advantages of our approach

e \ery few false positives --- Special use of under-constrained symbolic
execution

o 97% precision rate

e Determine security impacts of bugs

o By detecting security rules violations, it can identify security bugs
and also their security impacts

e Easy to extend

o To cover more kinds of security impacts, users just need to model
more types of security rules

42

Implementation

e OQOur prototype: SID
o Based on LLVM

e Currently support five types of common security impacts

O Qut-of-bound access, permission bypass, uninitialized use,
use-after-free, and double-free

43

Evaluation

44

Performance

e We analyzed 54K patches

e The experiments were performed on a desktop with 32GB
RAM and 6 core Intel Xeon CPU

e The analysis takes an average of 0.83 seconds for each
patch.

45

False-positive and false-negative analysis

e Few false positives
o We confirmed 227 security bugs with 8 false-positive cases.

e False negatives (can be reduced)
o 53% false negatives.
o Most of them are caused by incomplete coverage for security and
vulnerable operations.

46

Security evaluation for identified security bugs

e Security impacts
o Already confirmed by SID

e Reachabillity
o Check the call chain from entry points to vulnerable
functions

47

Security evaluation for identified security bugs

e Vulnerability confirmation for CVE
o 54 CVEs confirmed out of 227 identified bugs.
o 117 security bugs are still under review.

e Reachability analysis for security bugs
o 28 dynamically confirmed bugs (fuzzers).
o 154 are reachable from attacker controllable entry points, such as
system calls.

e 21 security bugs still unpatched in the Android kernel.

48

Conclusions

e Timely patching of security bugs requires the

determination of security impacts
o Patch propagation is hard and expensive

o So maintainers have to prioritize to fix the security bugs.

e We exploit the properties of under-constrained symbolic
execution for the determination
O Our novel approach: Symbolic rule comparison

e |dentified many overlooked security bugs in the kernel
O They may cause critical security conseguences

49

50

51

52

53

54

55

Security impacts, security rules violation, and fixes

Main security impacts
Out-of-bound access (16.5%)
Uninitialized use (13.7%)

Permission bypass (21.9%)

Use-after-free, double-free
(4.3%)

(See Il. BACKGROUND)

Security rules violation
Read/Write out of boundary
Use before initialization

Sensitive operations without
perm check

Use freed pointer

Common fixes
Add bound check (79%)
Add initialization (78%)

Add permission check
(59%)

Add nullification (32%)

56

Modeling different types of security bugs

Security operation Patched version Unpatched version

Pointer nullification FLAG,,, =1 FLAG,,, =0

Initialization FLAG,,, =1 FLAG,, =0

Permission check FLAG,,, =1 FLAG,, =0

Bound check CV < UpBound, or CV = UpBound, resp.
CV > LowBound CV < LowBound

Constraints for security operations from patches. Flag,.,, : Flag symbol; CV: critical variable ;
UpBound: checked upper bound; LowBound: checked lower bound.

57

Modeling different types of security bugs

Security rules Patched version Unpatched version
No use after free FLAG,, =0 FLAG,, = 1
Use after initialization | FLAG, =0 FLAG,, =1
Permission check FLAG, =0 FLAG,,, =1
before sensitive
operations
In-bound access CV = MAX, or/and CV < MAX, resp.
CV < MIN CV > MIN

Constraints from security rules. Flag,.,, : Flag symbol; CV: critical variable; MAX: maximum bound
of the buffer; MIN: minimum bound of the buffer

58

Generality of patch model

e The existence of three key components in vulnerabilities
o 77% vulnerabilities contains all of three key components
o 11% vulnerabilities contains part of key components

o After extending, SID can support the security-impact
determination for them (See VII. DISCUSSION)

59

What is the common model of
patches for security bugs?

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ...) ;

61

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ...) ;

l

Violate security rules

62

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, ...) ;

l

Violate security rules == Security impacts

63

Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ...) ;

l

Violate security rules == Security impacts

64

Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ...) ; ,

l

Violate security rules == Security impacts

65

Common patch model and key components

// Patched program
Security_operation(Critical variable, ...);

+

Vulnerable_operation(Critical variable, ...) ; ,

ViolaMrules — SeMts

NOT Violate security rules

66

